Remarks on possible local parity violation in heavy ion collisions

Adam Bzdak
Lawrence Berkeley National Laboratory

in collaboration with Volker Koch and Jinfeng Liao
arXiv:0912.5050 [nucl-th] (PRC), arXiv:1005.5380 [nucl-th]

Outline

- introduction
- STAR data: integrated signal, p_{t} distribution
- v_{2} contribution and Coulomb effect
- new dipole analysis
- conclusions

Introduction

Reaction plane

We work in the frame where $\Psi_{R P}=\mathbf{0}$

Chiral Magnetic Effect

$\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle_{\text {same }}>0, \quad\left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle_{\text {same }}=0$
$\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle_{s}=\left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle_{s}-\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle_{s}<0$

Definition:

$$
\begin{aligned}
& \oplus \\
& \oplus \oplus \oplus \\
& -\oplus \oplus \oplus \oplus- \\
& \oplus
\end{aligned}
$$

Integrated signal

STAR data: PRL 103 (2009) 251601; PRC 81 (2010) 54908

$$
\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle_{\text {same }}<0
$$

Chiral Magnetic Effect vs 'Trouble' Effect

How to distinguish between the two?

Chiral Magnetic Effect vs 'Trouble' Effect

$$
\begin{aligned}
& \left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle_{\text {same }} \simeq\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle_{\text {same }}<0 \\
& \left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle_{\text {opposite }}>0 ; \quad\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle_{\text {opposite }} \approx 0
\end{aligned}
$$

from

$$
\begin{aligned}
\left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle & =\left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle+\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle \\
\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle & =\left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle-\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle
\end{aligned}
$$

we obtain

$$
\begin{aligned}
& \left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle_{\text {same }} \simeq 0 \\
& \left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle_{\text {same }}<0
\end{aligned}
$$

and

$$
\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle_{\text {opposite }} \simeq\left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle_{\text {opposite }}>0
$$

Same sign

Opposite sign

where is the parity?
$\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle_{\text {same }} \simeq 0$
$\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle_{\text {same }} \equiv P+B_{\text {out }}$
in consequence:

$$
\mathrm{P} \simeq-\mathrm{B}_{\mathrm{out}}
$$

This is an unexpected relation ...
maybe it is lucky coincidence?
in order to answer that question we need differential $\left(p_{t}, \eta\right)$ $\left\langle\cos \left(\boldsymbol{\phi}_{\boldsymbol{\alpha}}+\boldsymbol{\phi}_{\boldsymbol{\beta}}\right)\right\rangle$ and $\left\langle\cos \left(\boldsymbol{\phi}_{\boldsymbol{\alpha}}-\boldsymbol{\phi}_{\boldsymbol{\beta}}\right)\right\rangle$

p_{t} distribution

$\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle \propto p_{t, \alpha}+p_{t, \beta}$ and very weak dependence on $\left|p_{t, \alpha}-p_{t, \beta}\right|$
We will show that the 'true' signal is located at low p_{t}

Definition

$$
\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle=\frac{\text { No. of correlated pairs }\left[\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right]}{\text { No. of all pairs }} \sim \frac{1}{1000}
$$

We can calculate the (differential) number of all pairs

$$
\left.\int \exp \left(\frac{-p_{t, \alpha}}{T}\right) \exp \left(\frac{-p_{t, \beta}}{T}\right) d^{2} p_{t, \alpha} d^{2} p_{t, \beta}\right|_{\text {fixed } p_{t, \alpha}+p_{t, \beta} \text { or }} ^{\text {fixed }\left|p_{t, \alpha}-p_{t, \beta}\right|}
$$

The number of all pairs vs $\left(p_{t, \alpha}+p_{t, \beta}\right)$ and $\left|p_{t, \alpha}-p_{t, \beta}\right|$

From that we can obtain p_{t} dependence of the number of correlated pairs:
$-\left|p_{t, \alpha}-p_{t, \beta}\right|$ distribution is as above (right plot)

- and multiply the left plot by $\left(p_{t, \alpha}+p_{t, \beta}\right) \ldots$
... we obtain [all pairs (black), correlated pairs (red)]

The observed signal is NOT inconsistent with the Chiral Magnetic Effect

v_{2} contribution (and Coulomb effect)

$\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle_{\text {same }} \equiv P+B_{\text {out }}$ $\left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle_{\text {same }} \equiv B_{\text {in }}$

STAR hope: $B_{\text {in }} \simeq B_{\text {out }}$ so that $\left|B_{\text {in }}-B_{\text {out }}\right| \ll P$, then
$\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle=\left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle-\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle \approx-P$ $\left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle=\left\langle\cos \left(\phi_{\alpha}\right) \cos \left(\phi_{\beta}\right)\right\rangle+\left\langle\sin \left(\phi_{\alpha}\right) \sin \left(\phi_{\beta}\right)\right\rangle \approx 2 B_{\text {in }}+P$

How to define correlation that does not depend on the reaction plane? Are there correlations that do not depend on the reaction plane?

Let us fix the reaction plane $\Psi_{R P}$
$p_{2}\left(\phi_{1}, \phi_{2}, \Psi_{R P}\right)=p\left(\phi_{1}, \Psi_{R P}\right) p\left(\phi_{2}, \Psi_{R P}\right)\left[1+C\left(\phi_{1}-\phi_{2}\right)\right]$
thus for ALL 2-particle correlations that do not depend on the reaction plane we obtain

$$
B_{\text {in }}-B_{\text {out }} \propto v_{2} \quad \Rightarrow \quad\left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle \propto v_{2}
$$

This is also true for correlations depending on $\left|\vec{k}_{1}-\vec{k}_{2}\right|$ or $\left|\vec{k}_{1}+\vec{k}_{2}\right|$ Indeed: $\left|\vec{k}_{1} \pm \vec{k}_{2}\right|^{2} \sim \vec{k}_{1} \cdot \vec{k}_{2} \sim \cos \left(\phi_{1}-\phi_{2}\right)$

As an example we calculated the Coulomb effect (Gamow factor):

$$
\begin{aligned}
& \left\langle\cos \left(\phi_{\alpha}+\phi_{\beta}\right)\right\rangle_{\text {same }} \approx-0.5 \cdot 10^{-3} \\
& \left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle_{\text {same }} \approx-2.0 \cdot 10^{-3}
\end{aligned}
$$

The Gamow factor is known to significantly overestimate the effect.
Probably not enough to explain the data!

It is clear that we have to study all sources of correlations, not only those explicitly dependent on the reaction plane orientation

Dipole analysis

In each event we can measure size and orientation Ψ_{1}^{c} of the dipole

We can also determine orientation of the particle reaction plane Ψ_{2} and study the relation between Ψ_{1}^{c} and Ψ_{2}
well known Q_{2} analysis for elliptic flow:

$$
\begin{aligned}
Q_{2} \cos \left(2 \Psi_{2}\right) & =\sum_{i} \cos \left(2 \phi_{i}\right) \\
Q_{2} \sin \left(2 \Psi_{2}\right) & =\sum_{i} \sin \left(2 \phi_{i}\right)
\end{aligned}
$$

new Q_{1}^{c} dipole analysis:

$$
\begin{aligned}
Q_{1}^{c} \cos \left(\Psi_{1}^{c}\right) & =\sum_{i} q_{i} \cos \left(\phi_{i}\right) \\
Q_{1}^{c} \sin \left(\Psi_{1}^{c}\right) & =\sum_{i} q_{i} \sin \left(\phi_{i}\right)
\end{aligned}
$$

In each event: $\left(Q_{2}, \Psi_{2}\right)$ and $\left(Q_{1}^{c}, \Psi_{1}^{c}\right) \Rightarrow\left\langle\cos \left(2 \Psi_{1}^{c}-2 \Psi_{2}\right)\right\rangle$

Monte Carlo: $f \propto 1+2 v_{2} \cos \left(2 \phi-2 \Psi_{\text {R.P. }}\right)+2 q \chi d_{1} \cos \left(\phi-\Psi_{C . S .}\right)$ $200+, 200-, v_{2}=0.1, d_{1}=0.05, \chi= \pm 1$

Good discriminating power, may clarify the situation

Conclusions

- for same sign STAR sees large signal in-plane and very week signal out-of-plane
- if there is a parity signal it must almost exactly cancel out-of-plane background
- maybe this is (un)lucky coincidence? We need differential $\left\langle\cos \left(\phi_{\alpha}-\phi_{\beta}\right)\right\rangle$ $\left(p_{t}, \eta\right)$ to answer that question
- signal is dominated by $p_{t}<1 \mathrm{GeV}$ and this is not inconsistent with the Chiral Magnetic Effect
- all two-particle correlations that do not depend on the reaction plane orientation contribute to the signal $\left(v_{2}\right)$
- as an example we estimated Coulomb effect and found it surprisingly large, however, not enough to explain the data (work still in progress)
- we proposed direct dipole analysis that may help to clarify the situation

